Sex-Specific Neurodevelopmental Programming by Placental Insulin Receptors on Stress Reactivity and Sensorimotor Gating.
نویسندگان
چکیده
BACKGROUND Diabetes, obesity, and overweight are prevalent pregnancy complications that predispose offspring to neurodevelopmental disorders, including autism, attention-deficit/hyperactivity disorder, and schizophrenia. Although male individuals are three to four times more likely than female individuals to develop these disorders, the mechanisms driving the sex specificity of disease vulnerability remain unclear. Because defective placental insulin receptor (InsR) signaling is a hallmark of pregnancy metabolic dysfunction, we hypothesized that it may be an important contributor and novel mechanistic link to sex-specific neurodevelopmental changes underlying disease risk. METHODS We used Cre/loxP transgenic mice to conditionally target InsRs in fetally derived placental trophoblasts. Adult offspring were evaluated for effects of placental trophoblast-specific InsR deficiency on stress sensitivity, cognitive function, sensorimotor gating, and prefrontal cortical transcriptional reprogramming. To evaluate molecular mechanisms driving sex-specific outcomes, we assessed genome-wide expression profiles in the placenta and fetal brain. RESULTS Male, but not female, mice with placental trophoblast-specific InsR deficiency showed a significantly increased hypothalamic-pituitary-adrenal axis stress response and impaired sensorimotor gating, phenotypic effects that were associated with dysregulated nucleotide metabolic processes in the male prefrontal cortex. Within the placenta, InsR deficiency elicited changes in gene expression, predominantly in male mice, reflecting potential shifts in vasculature, amino acid transport, serotonin homeostasis, and mitochondrial function. These placental disruptions were associated with altered gene expression profiles in the male fetal brain and suggested delayed cortical development. CONCLUSIONS Together, these data demonstrate the novel role of placental InsRs in sex-specific neurodevelopment and reveal a potential mechanism for neurodevelopmental disorder risk in pregnancies complicated by maternal metabolic disorders, including diabetes and obesity.
منابع مشابه
Sex-specific programming of offspring emotionality after stress early in pregnancy.
Prenatal stress is associated with an increased vulnerability to neurodevelopmental disorders, including autism and schizophrenia. To determine the critical time window when fetal antecedents may induce a disease predisposition, we examined behavioral responses in offspring exposed to stress during early, mid, and late gestation. We found that male offspring exposed to stress early in gestation...
متن کاملBDNF Val66Met Genotype Interacts With a History of Simulated Stress Exposure to Regulate Sensorimotor Gating and Startle Reactivity.
Reduced expression of Brain-Derived Neurotrophic Factor (BDNF) has been implicated in the pathophysiology of schizophrenia. The BDNF Val66Met polymorphism, which results in deficient activity-dependent secretion of BDNF, is associated with clinical features of schizophrenia. We investigated the effect of this polymorphism on Prepulse Inhibition (PPI), a translational model of sensorimotor gatin...
متن کاملMicrornas and the Sex Specific Development of the Neonatal Brain: A Point of Vulnerability to the Programming Effects of Prenatal Stress
Epidemiological studies have linked prenatal stress to increases in the incidence of neurodevelopmental disorders, including schizophrenia and autism spectrum disorders, associations that are often sex-dependent. In addition, biological sex is a strong predictor of many aspects of these disorders, including incidence, presentation, and therapeutic outcomes. While many factors contribute to thes...
متن کاملTargeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction.
Maternal stress is a key risk factor in neurodevelopmental disorders, which often have a sex bias in severity and prevalence. We previously identified O-GlcNAc transferase (OGT) as a placental biomarker in our mouse model of early prenatal stress (EPS), where OGT levels were lower in male compared with female tissue and were further decreased following maternal stress. However, the function of ...
متن کاملO-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development.
Maternal stress is a key risk factor for neurodevelopmental disorders, including schizophrenia and autism, which often exhibit a sex bias in rates of presentation, age of onset, and symptom severity. The placenta is an endocrine tissue that functions as an important mediator in responding to perturbations in the intrauterine environment and is accessible for diagnostic purposes, potentially pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological psychiatry
دوره 82 2 شماره
صفحات -
تاریخ انتشار 2017